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Kepler’s rescaling becomes, when “Eisenhart-Duval lifted” to 5-dimensional “Bargmann” gravitational 
wave spacetime, an ordinary spacetime symmetry for motion along null geodesics, which are the lifts of 
Keplerian trajectories. The lifted rescaling generates a well-behaved conserved Noether charge upstairs, 
which takes an unconventional form when expressed in conventional terms. This conserved quantity 
seems to have escaped attention so far. Applications include the Virial Theorem and also Kepler’s Third 
Law. The lifted Kepler rescaling is a Chrono-Projective transformation. The results extend to celestial 
mechanics and Newtonian Cosmology.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In today’s language, Kepler’s Third Law of planetary motion [1]
states that the planetary trajectories are taken into themselves un-
der the rescaling

t → �3 t , x → �2 x , � = const. (1.1)

where t denotes non-relativistic time and x the planet’s position. 
An intriguing feature is that the standard Lagrangian in 3 + 1 non-
relativistic dimensions changes under (1.1) as,

LK epler = m

2

(
dx

dt

)2

+ GmM�
|x| → �−2 LK epler , (1.2)

and is therefore not a symmetry in the sense that the Lagrangian 
does not change by a total derivative; some textbooks call it a 
“similitude” [2].

The aim of this Note is to celebrate the 400 years of Kepler’s 
“Harmonices Mundi” which first stated the Third Law [1] by pro-
viding new insight by “Eisenhart-Duval lifting” the problem to 
“Bargmann” space, which is in fact the space-time of a plane 
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gravitational wave in 5-dimensions [3–6]. The classical motions 
downstairs are the projections from the Bargmann space of null 
geodesics.

The clue is then that Kepler’s rescaling is a Chrono-Projective 
transformation [7] which becomes, when lifted to “Bargmann 
space”, a particular type of conformal isometry [5,8], which acts as 
a perfectly well behaving symmetry for null geodesics “upstairs” 
and provides us with a perfectly well behaved conserved quantity 
however when expressed in terms of the original non-relativistic 
variables “downstairs”, this quantity takes an unconventional form.

2. Kepler rescaling

Let us recall that the Bargmann manifold of a (d, 1) dimen-
sional non-relativistic system is a d + 2 dimensional manifold M
endowed with a metric with Lorentz signature which also carries a 
covariantly constant null vector ξ which we call here the “vertical 
vector”. In the case we are interested d = 3; in suitable coordinates 
x ∈R3, t, s ∈R, the metric and the vertical vector are,

gμνdxμdxν = dx2 + 2dtds + 2GM�
|x| dt2 and ξ = ∂s , (2.1)

respectively. Moreover, �( 1
|x| ) = 0 for x �= 0 and therefore the met-

ric is Ricci flat [5,6] — it is a vacuum solution of the Einstein 
equations. In other words, it is a gravitational wave in 5D .

The geodesics in Bargmann space are described by the La-
grangian
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Lgeo = 1

2
(ẋ)2 + ṫ ṡ + GM�

|x| ṫ2 , (2.2)

where the “dot”, ˙( ) = d/dσ is the derivative w.r.t. an affine param-
eter σ . Then (2.2) implies the equations of motion

ẍ = −GM�ṫ2 x

|x|3 , (2.3a)

ẗ = 0 , (2.3b)
d

dσ

(
ṡ + 2GM�

|x| ṫ
) = 0 . (2.3c)

The non-relativistic spacetime is identified with the quotient of 
M by the integral curves of ξ ; the non-relativistic motions — in 
our case the Kepler orbits — are the projections to non-relativistic 
space-time of the null geodesic of the 5 dimensional metric (2.1).

Chrono-Projective transformations were introduced originally in 
the Newton-Cartan context [7]. In Bargmann terms they are confor-
mal mapping of M, f ∗ gμν = �2(t)gμν , which leave the direction
of ξ invariant [8].1 Working infinitesimally,

LY gμν = 2ω(t) gμν and LY ξ = ψ(t) ξ . (2.4)

Lifting the Kepler rescaling (1.1) to 5D Bargmann space as

t → �3 t , x → �2 x , s → � s (2.5a)

Y = 3t ∂t + 2x ∂x + s ∂s (2.5b)

rescales the metric conformally, gμνdxμdxν → �4 gμνdxμdxν . It 
does not preserve ξ , though, only its direction,

∂s → �−1∂s , i.e. LY ∂s = −∂s , (2.6)

and is therefore Chrono-Projective. The geodesic Lagrangian (2.2)
scales, under the lifted Kepler scaling (2.5), as Lgeo → �4Lgeo . 
At the first sight, this appears to be a no better behaviour than 
“downstairs”, (1.2), – and this is indeed so when the geodesic is 
timelike or spacelike. However for null geodesics the Lagrangian is con-
strained to vanish,

Lgeo = 0, (2.7)

which makes it invariant: lifted Kepler rescalings act, for null geodesics, 
as symmetries.

Let us emphasise that “upstairs” i.e., in the 5D gravitational 
wave space-time, no additional constraint is required; Noether’s 
theorem works for any conformal vectorfield which leaves the 
geodesic Lagrangian invariant. The associated conserved quantity 
for motion along a null geodesic in 5D is, in our case,

Q = 3tpt + 2xi pi + sps , (2.8)

whose conservation can also be checked by a direct calculation: 
in terms of the canonical momenta the equations of motion (2.3)
imply that pt = ṡ + 2GM�

|x| ṫ and ps = ṫ are constants of the motion. 
Then deriving Q and using the equations of motion we get

Q̇ = 4Lgeo = 0 , (2.9)

because, precisely, our geodesics are null. Conversely, the gener-

ating vector field Y in (2.5b) is recovered as Y μ =
{

xμ, Q
}

=
∂Q/∂ pμ .

1 Transformations which project down are those which strictly preserve the ver-
tical vector, LY ξ = 0 [4,5].
The geodesic Hamiltonian is

Hgeo = 1

2
pi pi − GM�

|x| p2
s + pt ps. (2.10)

Performing a Legendre transformation, this Hamiltonian becomes 
the geodesic Lagrangian, Hgeo = Lgeo . Moreover, identifying ps

with m the mass in 3D and expressing pt from the null condi-
tion Hgeo = 0 yields

pt = −
(

1

2m
pi pi − GmM�

|x|
)

= −E , (2.11)

which is (minus) the non-relativistic energy. Then from ṫ = ps = m
we infer that d/dσ = md/dt . Denoting d/dt by “prime”, pi = m(xi)′
and putting the geodesic Lagrangian equal to zero yields

s′(t) = −
(

1

2
(x′)2 + GM�

|x|
)

= − 1

m
LK epler . (2.12)

The change of s along a lightlike geodesic is thus proportional to 
minus the 3D Kepler action calculated along the projected trajectory [6],

s(t) = Q
m

+ 3t
E

m
− 2(pi xi)

m
= s0 − 1

m

t∫
0

LK epler(x(τ ),x′(τ ))dτ .

(2.13)

The conserved quantity (2.8) can be expressed “mostly” but not 
completely in 3D terms,

Q = −3t E +m
d

dt
(xi x

i)−
t∫

0

LK epler(x(τ ),x′(τ ))dτ +ms0 , (2.14)

which explains also why it does not project down: it depends on 
s0. However subtracting ms0, we get Q K epler =Q − ms0

Q K epler = −3t E + m
d

dt
(xi x

i) −
t∫

0

LK epler(x(τ ),x′(τ ))dτ

(2.15)

where the integration is along the classical trajectory in 3-space. 
Q K epler is well-defined and also conserved, as proved along the 
same lines as for (2.9)). We mention that the same expression can 
also be derived from the original Kepler Lagrangian using a gener-
alization of the classical Noether theorem [9].

Let us stress that (2.15) is a local quantity despite its surprising 
form, because the classical trajectory (apart at caustic singulari-
ties) is uniquely determined by its end points. The integral is just 
Hamilton’s action function.

For t = 0 both the first and the last terms in (2.15) vanish, 
leaving us with Q K epler = 2pi(0)xi(0). Let us record for further ref-

erence that 
t∫

0

LK epler dt =
t∫

0

pidxi − Et , which allows us to rewrite 

(2.15) also as

Q K epler = −2t E + m
d

dt
(xi x

i) −
t∫

0

pi
dxi

dt
dt . (2.16)
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3. Applications of our conserved quantity

We restrict our attention henceforth to elliptic motions in the 
x3 = 0 plane with E < 0 and draw some interesting consequences 
of the conservation of (2.15). Parabolic and hyperbolic motions be-
have similarly.

If time is measured so that for t = 0 we are in the closest (per-
ihelion) position then Q K epler is just zero. But then a full period 
later i.e. for t = T , we are back where we started from, so that (
d(xi xi)/dt

)
(t = T ) = 0, yielding,

2T E +
T∫

0

pi
dxi

dt
dt = 0 . (3.1)

The first consequence is that expressing the momenta in terms of 
velocities allows us to infer the Virial Theorem: the energy is minus 
the average kinetic energy for a full period,

E = − 1

T

T∫
0

m

2
(

dx

dt
)2dt = −Ek . (3.2)

The integral in (3.1) can actually be determined. Consider the 
radius vectors drawn from the focus where the Sun sits and also 
from the other focus to the current position of the planet. The rates 
of change of the areas swept out the by these two radius vectors 
are
dA

dt
= 1

2m
pφ , (3.3a)

dA′

dt
= b2

2pφ

(
pr

dr

dt
+ pφ

dφ

dt

)
, (3.3b)

where pφ is the angular momentum. The first of these relations 
is Kepler’s Second Law, while (3.3b) might reasonably be called 
Tait’s Law [10,11]; see [12] for a new, geometric proof. Then for a 
full period T both radius vectors sweep through the ellipse, and 
therefore,

πab =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T∫
0

dA

dt
dt = pφ

2m
T ,

T∫
0

dA′

dt
dt = b2

2pφ

T∫
0

(
pr

dr

dt
+ pφ

dφ

dt

)
dt ,

(3.4)

where a and b are the semi-major and the semi-minor axes, re-
spectively. From here we infer

T∫
0

(
pr

dr

dt
+ pφ

dφ

dt

)
dt = 4π2a2m

T
. (3.5)

Reinserting this into (3.1) and using E = −GmM�/2a, we end up 
with the Third Law,

a3

T 2
= GM�

4π2
. (3.6)

Let us observe finally that while the planet goes around once 
the vertical coordinate changes, by (2.13), by

�s = − 1

m

T∫
0

LK eplerdt = − 1

m

T∫
0

(
pr

dr

dt
+ pφ

dφ

dt

)
dt + E

m
T

= −4π2a2

T
− GM�T

2a
. (3.7)
Fig. 1. The closed Keplerian trajectories become spirals when lifted to Bargmann 
space. They are permuted by the lift (2.5) of Kepler’s rescaling (1.1) indicated by 
arrows.

The equations of motion (2.3) can be solved numerically; it con-
firms that (2.8) is indeed conserved, and also the formulae of this 
section. The solutions are shown in Fig. 1.

4. Generalization to N bodies

The Kepler’s scaling property holds in fact for all of Newtonian 
Cosmology [12,13]. The N-body equations (no sum on a),

ma
d2xa

dt2
= −

∑
b �=a

mamb
xa − xb

|xa − xb|3 , a = 1,2, . . . , N (4.1)

correspond, in the Bargmann framework, to the projections to the 
N-particle configuration space of the null geodesics of the 3N + 2
dimensional metric [5],

gμνdxμdxν =
N∑

a=1

ma

m
dx2

a + 2dtds − 2U

m
dt2 , (4.2a)

m =
∑

a

ma , U = −1

2

∑
a,b �=a

Gmamb

|xa − xb| . (4.2b)

Then the Kepler rescaling (2.5), t → �3t, xa → �2 xa, s → � s, 
acts plainly conformally, gμνdxμdxν → �4 gμνdxμdxν , generating 
a symmetry and a conserved charge for null geodesics,

Q = −3T E + 2
∑

a

xa · pa + sm , E =
∑

a

p2
a

2ma
+ U , (4.3a)

s = s0 − 1

m

t∫
0

LNdτ , LN =
∑

a

ma(x′
a)

2

2
− U .

(4.3b)

Here LN is the N-body Lagrangian. This charge projects again to a 
conserved charge of unconventional form.

5. Conclusion

This year we celebrate the 400’th anniversary of Kepler’s dis-
covery of his Third Law of planetary motion, which concerns the 
period and size of geometrically similar bound orbits [1].

Famously, Newton derived this and other properties of the or-
bits from his Universal Inverse Square Law of Gravitation. This is 
what we find in most textbooks, e.g. in [2]. Since his time there 
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have been many investigations of the geometry and symmetry of 
these orbits, but none has derived Kepler’s Third Law using the 
methods introduced by Emmy Noether.

In this paper we start with a previously developed but not 
well known general formalism called the Bargmann framework of 
Eisenhart [3], and of Duval et al. [4,5]. It states that the motion 
may be regarded as the projection of the motion of light rays mov-
ing in a five-dimensional extended spacetime and obtain for the 
first time Kepler’ law as a consequence of Emmy Noether’s theo-
rem.

In detail, lifting Kepler’s rescaling, (1.1), to 5D Bargmann space 
as (2.5) generates there a well-behaved conserved charge, (2.8), for 
null geodesics. It allows us to integrate the “vertical” motion once 
the Kepler motions had been determined. Subtracting a constant 
term yields a conserved charge for ordinary planetary motion of 
an unconventional form.2 Rather incredibly, (2.15) appears to be a 
new conserved quantity which seems to have escaped attention so 
far. It is in fact different from the familiar Runge-Lenz vector as 
can be understood by recalling their origin: while (2.8) is a scalar
generated by a conformal Killing vector of 5D Bargmann space, the 
components of the Runge-Lenz vector are associated with 3 Killing 
tensors [5].

The conserved quantity (2.15) allows us to derive the Virial 
Theorem, (3.2), the usual form of Kepler’s Third law, (3.6); the evo-
lution of the s-coordinate is consistent with Fig. 1.

One can inquire if the Kepler problem admits further spacetime 
symmetries. The answer is no: the intrinsically defined Newton-
Cartan structure allows for a 5-parameter Chrono-Projective group 
only, composed by rotations, time translations and the Kepler 
rescaling [7]. For further details and applications of conformal 
symmetries for gravitational waves, see [15,16]. Other examples of 
Chrono-Projective transformations include the Schrödinger-Newton 
equations [17], hydrodynamics [18], Schrödinger operators [19]
and projective dynamics [20].

The expression 
T∫

0

pi
dxi

dt
dt we used repeatedly in sec. 3 had ac-

tually played a prominent rôle in the Old Quantum Theory, namely 
in the Nicholson-Bohr-Wilson-Sommerfeld quantization conditions 
[21–25]: if a coordinate q varies periodically with time, then the 
quantity

1

2πh

∮
pdq , (5.1)

where h = 2π h̄ is Planck’s constant, should be an integer. For the 
closed Keplerian orbits we have two such coordinates, r and φ. 
We have in particular the quantization of angular momentum first 
suggested by Nicholson [21] and its generalization proposed, inde-
pendently, by Bohr [22], Wilson [23,24] and by Sommerfeld [25],

1

2πh

∮
pφdφ = l , and

1

2πh

∮
(prdr + pφdφ) = n , (5.2)

where l the total angular momentum and n is the principal quan-
tum number, respectively. The geometrical significance of these 
relations is given by (3.3b).

In our study we were helped by that, because of the Equivalence 
Principle, the Keplerian trajectories are independent of the mass. 
However, it is illuminating to consider the 3D transformations in-
herited from those in 5D phase space and generated by (2.8) by 
complementing (1.1) with

2 Unconventional conserved quantities for geodesic motion in a curved space 
were studied recently in [14].
m → �−1m . (5.3)

Details will be discussed elsewhere.
We conclude with the remark that Kepler’s game changing 

three laws remain as relevant to our exploration of the universe 
and the laws that govern it today as when they were first formu-
lated. No better illustration of this fact may be found than in [26,
27]. Studying the motion of matter around a black hole could pro-
vide a test for the validity/corrections of Kepler’s laws at the large 
scale.

Note added

After our paper was submitted, we came across [28] which has 
a vague relation to our work here.
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